linear_solve.f90 Source File


Source Code

module linear_solve

   implicit none

   public :: lu_decomposition
   public :: lu_back_substitution
   public :: lu_inverse
   public :: imaxloc

   interface lu_decomposition
      module procedure lu_decomposition_real
      module procedure lu_decomposition_complex
   end interface

   interface lu_back_substitution
      module procedure lu_back_substitution_real
      module procedure lu_back_substitution_real_complex
      module procedure lu_back_substitution_complex
      module procedure lu_back_substitution_matrix_real
      module procedure lu_back_substitution_matrix_complex
   end interface

   interface lu_inverse
      module procedure lu_inverse_real
      module procedure lu_inverse_complex
   end interface

contains

   subroutine lu_decomposition_real(lu, idx, d)

      implicit none

      real, dimension(:, :), intent(in out) :: lu
      integer, dimension(:), intent(out) :: idx
      real, intent(out) :: d

      real, parameter :: zero = 1.0e-20
      real, dimension(size(lu, 1)) :: vv
      real, dimension(size(lu, 2)) :: dum

      integer :: j, n, imax

      n = size(lu, 1)

      d = 1.0
      vv = maxval(abs(lu), dim=2)
      if (any(vv == 0.0)) &
         write (*, *) 'singular matrix in lu_decomposition'
      vv = 1.0 / vv
      do j = 1, n
         imax = (j - 1) + imaxloc(vv(j:n) * abs(lu(j:n, j)))
         if (j /= imax) then
            dum = lu(imax, :)
            lu(imax, :) = lu(j, :)
            lu(j, :) = dum
            d = -d
            vv(imax) = vv(j)
         end if
         idx(j) = imax
         if (lu(j, j) == 0.0) lu(j, j) = zero
         lu(j + 1:n, j) = lu(j + 1:n, j) / lu(j, j)
         lu(j + 1:n, j + 1:n) = lu(j + 1:n, j + 1:n) - spread(lu(j + 1:n, j), 2, n - j) &
                                * spread(lu(j, j + 1:n), 1, n - j)
      end do

   end subroutine lu_decomposition_real

   subroutine lu_decomposition_complex(lu, idx, d)

      implicit none

      complex, dimension(:, :), intent(in out) :: lu
      integer, dimension(:), intent(out) :: idx
      real, intent(out) :: d

      real, parameter :: zero = 1.0e-20
      real, dimension(size(lu, 1)) :: vv
      complex, dimension(size(lu, 2)) :: dum

      integer :: j, n, imax

      n = size(lu, 1)

      d = 1.0
      vv = maxval(cabs(lu), dim=2)
      if (any(vv == 0.0)) &
         write (*, *) 'singular matrix in lu_decomposition'
      vv = 1.0 / vv
      do j = 1, n
         imax = (j - 1) + imaxloc(vv(j:n) * cabs(lu(j:n, j)))
         if (j /= imax) then
            dum = lu(imax, :)
            lu(imax, :) = lu(j, :)
            lu(j, :) = dum
            d = -d
            vv(imax) = vv(j)
         end if
         idx(j) = imax
         if (lu(j, j) == 0.0) lu(j, j) = zero
         lu(j + 1:n, j) = lu(j + 1:n, j) / lu(j, j)
         lu(j + 1:n, j + 1:n) = lu(j + 1:n, j + 1:n) - spread(lu(j + 1:n, j), 2, n - j) &
                                * spread(lu(j, j + 1:n), 1, n - j)
      end do

   end subroutine lu_decomposition_complex

   subroutine lu_back_substitution_real(lu, idx, b)

      implicit none

      real, dimension(:, :), intent(in) :: lu
      integer, dimension(:), intent(in) :: idx
      real, dimension(:), intent(in out) :: b

      integer :: i, n, ii, ll
      real :: summ

      n = size(lu, 1)
      ii = 0
      do i = 1, n
         ll = idx(i)
         summ = b(ll)
         b(ll) = b(i)
         if (ii /= 0) then
            summ = summ - dot_product(lu(i, ii:i - 1), b(ii:i - 1))
         else if (summ /= 0.0) then
            ii = i
         end if
         b(i) = summ
      end do
      do i = n, 1, -1
         b(i) = (b(i) - dot_product(lu(i, i + 1:n), b(i + 1:n))) / lu(i, i)
      end do

   end subroutine lu_back_substitution_real

   subroutine lu_back_substitution_real_complex(lu, idx, b)

      implicit none

      real, dimension(:, :), intent(in) :: lu
      integer, dimension(:), intent(in) :: idx
      complex, dimension(:), intent(in out) :: b

      integer :: i, n, ii, ll
      complex :: summ

    !! The dot products we use below automatically take the complex conjugate of its
    !! first argument, which we do not want here. Hence the use of conjg to undo this

      n = size(lu, 1)
      ii = 0
      do i = 1, n
         ll = idx(i)
         summ = b(ll)
         b(ll) = b(i)
         if (ii /= 0) then
            summ = summ - dot_product(lu(i, ii:i - 1), b(ii:i - 1))
         else if (summ /= 0.0) then
            ii = i
         end if
         b(i) = summ
      end do
      do i = n, 1, -1
         b(i) = (b(i) - dot_product(lu(i, i + 1:n), b(i + 1:n))) / lu(i, i)
      end do

   end subroutine lu_back_substitution_real_complex

   subroutine lu_back_substitution_complex(lu, idx, b)

      implicit none

      complex, dimension(:, :), intent(in) :: lu
      integer, dimension(:), intent(in) :: idx
      complex, dimension(:), intent(in out) :: b

      integer :: i, n, ii, ll
      complex :: summ

    !! The dot products we use below automatically take the complex conjugate of its
    !! first argument, which we do not want here. Hence the use of conjg to undo this

      n = size(lu, 1)
      ii = 0
      do i = 1, n
         ll = idx(i)
         summ = b(ll)
         b(ll) = b(i)
         if (ii /= 0) then
            summ = summ - dot_product(conjg(lu(i, ii:i - 1)), b(ii:i - 1))
         else if (summ /= 0.0) then
            ii = i
         end if
         b(i) = summ
      end do
      do i = n, 1, -1
         b(i) = (b(i) - dot_product(conjg(lu(i, i + 1:n)), b(i + 1:n))) / lu(i, i)
      end do

   end subroutine lu_back_substitution_complex

   subroutine lu_back_substitution_matrix_real(lu, idx, b)

      implicit none

      real, dimension(:, :), intent(in) :: lu
      integer, dimension(:), intent(in) :: idx
      real, dimension(:, :), intent(in out) :: b

      integer :: i, j, n, ii, ll
      real :: summ

      n = size(lu, 1)
      ii = 0
      do j = 1, n
         do i = 1, n
            ll = idx(i)
            summ = b(ll, j)
            b(ll, j) = b(i, j)
            if (ii /= 0) then
               summ = summ - dot_product(lu(i, ii:i - 1), b(ii:i - 1, j))
            else if (summ /= 0.0) then
               ii = i
            end if
            b(i, j) = summ
         end do
         do i = n, 1, -1
            b(i, j) = (b(i, j) - dot_product(lu(i, i + 1:n), b(i + 1:n, j))) / lu(i, i)
         end do
      end do

   end subroutine lu_back_substitution_matrix_real

   subroutine lu_back_substitution_matrix_complex(lu, idx, b)

      implicit none

      complex, dimension(:, :), intent(in) :: lu
      integer, dimension(:), intent(in) :: idx
      complex, dimension(:, :), intent(in out) :: b

      integer :: i, j, n, ii, ll
      complex :: summ

    !! The dot products we use below automatically take the complex conjugate of its
    !! first argument, which we do not want here. Hence the use of conjg to undo this

      n = size(lu, 1)
      ii = 0
      do j = 1, n
         do i = 1, n
            ll = idx(i)
            summ = b(ll, j)
            b(ll, j) = b(i, j)
            if (ii /= 0) then
               summ = summ - dot_product(conjg(lu(i, ii:i - 1)), b(ii:i - 1, j))
            else if (summ /= 0.0) then
               ii = i
            end if
            b(i, j) = summ
         end do
         do i = n, 1, -1
            b(i, j) = (b(i, j) - dot_product(conjg(lu(i, i + 1:n)), b(i + 1:n, j))) / lu(i, i)
         end do
      end do

   end subroutine lu_back_substitution_matrix_complex

  !!
  !! One shouldn't need to compute the inverse of a matrix if solving the linear equation A.x = y;
  !! a simple back substitution should suffice.
  !!
  !! Only compute the inverse of A when absolutely necessary!
  !!
   subroutine lu_inverse_real(lu, idx, inverse)

      implicit none

      real, dimension(:, :), intent(in) :: lu
      integer, dimension(:), intent(in) :: idx
      real, dimension(:, :), intent(out) :: inverse

      integer :: i, n

      n = size(lu, 1)

      inverse = 0.0
      do i = 1, n
         inverse(i, i) = 1.0
      end do

      do i = 1, n
         call lu_back_substitution(lu, idx, inverse(:, i))
      end do

   end subroutine lu_inverse_real

   subroutine lu_inverse_complex(lu, idx, inverse)

      implicit none

      complex, dimension(:, :), intent(in) :: lu
      integer, dimension(:), intent(in) :: idx
      complex, dimension(:, :), intent(out) :: inverse

      integer :: i, n

      n = size(lu, 1)

      inverse = 0.0
      do i = 1, n
         inverse(i, i) = 1.0
      end do

      do i = 1, n
         call lu_back_substitution(lu, idx, inverse(:, i))
      end do

   end subroutine lu_inverse_complex

   function imaxloc(array)
      real, dimension(:), intent(in) :: array
      integer :: imaxloc
      integer, dimension(1) :: imax
      imax = maxloc(array)
      imaxloc = imax(1)
   end function imaxloc

end module linear_solve